Corpona — The Pythonic Way of Processing
Corpora

Khalid Alnajjar[0000_0002_7986_2994] and
Mika Héméléﬁnen[OOOOfOOOl7931571278]

Department of Digital Humanities, University of Helsinki
firstname.lastname@helsinki.fi

Abstract. Every NLP researcher has to work with different XML or
JSON encoded files. This often involves writing code that serves a very
specific purpose. Corpona is meant to streamline any workflow that in-
volves XML and JSON based corpora, by offering easy and reusable func-
tionalities. The current functionalities relate to easy parsing and access
to XML files, easy access to sub-items in a nested JSON structure and
visualization of a complex data structure. Corpona is fully open-source
and it is available on GitHub and Zenodo.

Keywords: XML data - corpus processing - open source

1 Introduction

In the era of machine learning, corpora have become one of the most important
resources for NLP research. However, there is no one standard for annotating
data or representing existing linguistic data, in fact there are several of them:
Giella’s XMLs [5], TEI (see [3]), CoNLL-U [17], ELAN XML [16], EXMARaLDA
XML [12] and NewsML XML [1] to name a few. There is such a variety of
different ways of representing data that an NLP researcher is bound to spend
a whole lot of time in converting them from one format to another. For this
purpose, we have implemented Corpona'. While several other corpus processing
tools exist [13, 14, 6], we aim for simplicity and reusability with Corpona.
Corpona is an open source Python library licensed under the Apache-2.0 Li-
cense. Each release version is uploaded and permanently archived automatically
to Zenodo. The library is easy to install through pip (pip install corpona).
While working with XML data in various projects such as Ve’'rdd [2] and
neologism retrieval [11], we have found ourselves writing similar parsing code for
a variety of different tasks. This called for a more centralized approach where
code reuse can be maximized. This need gave the initial idea for Corpona, a
one-stop tool for XML and JSON dataset processing. We needed a fast way of
getting things done with as little new code as possible. As some of the XML
structures we have worked with, such as Giella XML, are in use in multiple tools
such as click-in-text dictionaries [7] and online learning tools [15], the features
implemented in Corpona are potentially useful for a wider audience.

! https://github.com/mokha/corpona

In Hédmaéldinen, M., Partanen, N., Alnajjar, K. (eds.) Multilingual Facilitation (2021), pages 25-30. —— CC BY 4.0

2 Alnajjar & Haméldinen

2 The Current Architecture

At the current stage, Corpona consists of three main modules: xml, summary
and explorer. The main functionalities of these individual modules are easily
accessible from the main corpona module.

corpona.explorer corpona.summary corpona.xml

]

corpona

Fig. 1. A UML diagram showing the modules in corpona.

The modular structure is seen in Figure 1. This structure has been crafted
keeping in mind the future development directions of the library. Only the aml
module has classes. The class diagram is shown in Figure 2.

Item

attributes : defaultdict
lext

filtered_attributes(ignore)
odict2item(value)

‘T

XML

parse_xml(cls, filename, namespaces)

Fig. 2. A UML diagram showing the classes in the zml module

In Hédmaéldinen, M., Partanen, N., Alnajjar, K. (eds.) Multilingual Facilitation (2021), pages 25-30. —— CC BY 4.0

Corpona — The Pythonic Way of Processing Corpora 3

3 Functionalities

In this section, we will describe the main features of Corpona. We go through
every module and show usage examples to illustrate their use with real world
data.

from corpona import find_child

data = {"key":["list_item", {"key2":"oo"}, {"key2":"bbb"}]}
print(find_child(data, ["key", "key2"1))
print(find_child(data, ["key", "key3"], default_value="ok"))

>> ['oo', 'bbb']
>> ['ok']

Fig. 3. An example of the find_child method in the explorer module

Figure 3 shows the main functionality of the ezplorer module. The find_child
method is useful for getting the data recorded in a sub-dictionary. The method
takes in a dictionary and a path consisting of keys. The method will automati-
cally go into lists and loop through their sub-elements finding dictionaries with
keys indicated in the path. We find this feature useful as usually we just want
certain data out from a JSON or an XML based on dictionary keys regardless
of whether they were inside of a list or not. The method also takes an optional
default_value parameter. This value will be returned in case no item matched the
query. As the method automatically loops through lists, it is possible that there
are multiple dictionaries that meet the criteria set in the path, for this reason
the method always outputs a list.

Figure 4 shows how to use the summarize method from the summary module.
The method takes in a complex dictionary structure loaded from a JSON file or
parsed from an XML using Corpona. The method produces a quick overview of
the structure of the data as seen in the example output. It is a fast way of seeing
what keys are in the dictionary and what the data types are that are stored
under each key. This is very useful for better understanding the structure of a
new dataset one starts to work with.

Figure 5 shows the XML parser in action. The parser takes in a path to a file,
and parses it into a manageable Item structure. Corpona makes it possible to
loop through the different parts of the XML in an easy fashion. The sub-elements
can be looped by getting an item by tag name from the Item class. The XML
attributes can be accessed directly e.g. d.href would return the href attribute of
the Item object d.

In Hédmaéldinen, M., Partanen, N., Alnajjar, K. (eds.) Multilingual Facilitation (2021), pages 25-30. —— CC BY 4.0

4 Alnajjar & Haméldinen

from corpona import summarize
from pprint import pprint

pprint(summarize([
{'keyl': 'hellol', 'key2': 1},
{'keyl': 'hello2', 'key2': 2},
{'keyl': 'hello3', 'key2': 3},
{'keyl': 'hello4', 'key2': 4},
1), indent=4)

>> [{'dict': [{'keyl': ['str'], 'key2': ['int']}]}]

Fig. 4. An example of the summarize method in the summary module

from corpona import XML

d = XML.parse_xml("test.xml")

for item in d['p']l:
print(item)

>> Hello

>> World

Fig. 5. An example of the XML class in the zml module

4 Conclusions and Future Features

In this paper, we have presented Corpona, an open-source Python library for
corpus processing. We have described the main functionalities and demonstrated
their use with examples.

Conversion between different formats is on the long-term road-map of this
library. Some existing approaches such as converting Giella XMLs to TEI format
[8] could be incorporated in the future. This not only makes the data more
accessible in Python but also facilitates its reuse on different platforms that
operate on different XML structures.

We are also thinking of different ways of visualizing data. The biggest chal-
lenge when you are given a dataset, is to know exactly what it has, what the
structure is, what elements can contain lists, strings, numbers, null types etc.
Having a simple way of visualizing the structure helps in understanding how
to approach the data. The current implementation in the summary module is
a good start but it might still produce an overly complex output for large and
inconsistent dictionaries.

Despite the growing number of Universal Dependencies annotated corpora
for endangered Uralic languages [10, 9], we do not currently have any plans to in-

In Hédmaéldinen, M., Partanen, N., Alnajjar, K. (eds.) Multilingual Facilitation (2021), pages 25-30. —— CC BY 4.0

Corpona — The Pythonic Way of Processing Corpora 5

corporate a CoNNL-U parser in Corpona as this feature is available in our other
library called UralicNLP [4]. However, UralicNLP does provide rudimentary ac-
cess to Giella XML dictionaries. In the future, Corpona should be included in
UralicNLP as a dependency for better parsing these files.

References

1. Allday, T.: Newsml — enabling a standards-led revolution in news publishing? In:
XML TECHNOLOGIES IN BROADCASTING (1998)

2. Alnajjar, K., Haméldinen, M., Rueter, J., Partanen, N.: Ve’rdd. narrowing the
gap between paper dictionaries, low-resource nlp and community involvement. In:
Proceedings of the 28th International Conference on Computational Linguistics:
System Demonstrations. pp. 1-6 (2020)

3. Banski, P., Bowers, J., Erjavec, T.: Tei-lex0 guidelines for the encoding of dictio-
nary information on written and spoken forms. In: Electronic Lexicography in the
21st Century: Proceedings of eLex 2017 Conference (2017)

4. Hamaladinen, M.: UralicNLP: An NLP library for Uralic languages. Journal of Open
Source Software 4(37), 1345 (2019). https://doi.org/10.21105/joss.01345

5. Moshagen, S., Rueter, J., Pirinen, T., Trosterud, T., Tyers, F.M.: Open-Source
Infrastructures for Collaborative Work on Under-Resourced Languages (2014), the
LREC 2014 Workshop “CCURL 2014 - Collaboration and Computing for Under-
Resourced Languages in the Linked Open Data Era”

6. Rayson, P.: Wmatrix: a web-based corpus processing environment. In: Citeseer
(2009)

7. Rueter, J.: Giellatekno open-source click-in-text dictionaries for bringing closely
related languages into contact. In: Proceedings of the Third Workshop on Compu-
tational Linguistics for Uralic Languages. pp. 8-9 (2017)

8. Rueter, J., Haméldinen, M.: On xml-mediawiki resources, endangered languages
and tei compatibility, multilingual dictionaries for endangered languages. In:
Giirlek, M., Cigekler, A., Tagdemir, Y. (eds.) AsiaLex 2019. Asos Publisher, Turkey
(2019)

9. Rueter, J., Partanen, N., Ponomareva, L..: On the questions in developing computa-
tional infrastructure for komi-permyak. In: Proceedings of the Sixth International
Workshop on Computational Linguistics of Uralic Languages. pp. 15-25 (2020)

10. Rueter, J.M., Tyers, F.M.: Towards an open-source universal-dependency treebank
for erzya. In: International Workshop for Computational Linguistics of Uralic Lan-
guages (2018)

11. Saily, T., Mékeld, E., Hamé&ladinen, M.: Explorations into the social contexts of
neologism use in early english correspondence. Pragmatics & Cognition 25(1), 30—
49 (2018). https://doi.org/10.1075/pc.18001.sai

12. Schmidt, T., Wérner, K.: Exmaralda. In: The Oxford handbook of corpus phonol-
ogy (2014)

13. Silberztein, M.: Intex: a corpus processing system. In: COLING 1994 Volume 1:
The 15th International Conference on Computational Linguistics (1994)

14. Silberztein, M.: Nooj: a linguistic annotation system for corpus processing. In:
Proceedings of HLT/EMNLP 2005 Interactive Demonstrations. pp. 10-11 (2005)

15. Uibo, H., Rueter, J., Iva, S.: Building and using language resources and infrastruc-
ture to develop e-learning programs for a minority language. In: Proceedings of
the joint workshop on NLP for Computer Assisted Language Learning and NLP
for Language Acquisition. pp. 61-67 (2017)

In Hédmaéldinen, M., Partanen, N., Alnajjar, K. (eds.) Multilingual Facilitation (2021), pages 25-30. —— CC BY 4.0

6 Alnajjar & Haméldinen

16. Wittenburg, P., Brugman, H., Russel, A., Klassmann, A., Sloetjes, H.: Elan: a pro-
fessional framework for multimodality research. In: 5th International Conference
on Language Resources and Evaluation (LREC 2006). pp. 1556-1559 (2006)

17. Zeman, D., Nivre, J., Abrams, M., Ackermann, E., Aepli, N., Aghaei, H.,
Agié, 7., Ahmadi, A., Ahrenberg, et al.: Universal dependencies 2.7 (2020),
http://hdl.handle.net/11234/1-3424, LINDAT/CLARIAH-CZ digital library at
the Institute of Formal and Applied Linguistics (UFAL), Faculty of Mathemat-
ics and Physics, Charles University

In Hédmaéldinen, M., Partanen, N., Alnajjar, K. (eds.) Multilingual Facilitation (2021), pages 25-30. —— CC BY 4.0

